

Feb 19-8:47 AM

$$
\begin{aligned}
& \text { find two numbers with Sum of 10, and } \\
& x \notin y \\
& \text { their product is maximum } \\
& x y \\
& P(x)=x(10-x)=-x^{2}+10 x \\
& \begin{array}{r}
\text { at the vertex } \\
x=\frac{-b}{2 a}=\frac{-10}{2(-1)}=\frac{-10}{-2}=5 \\
(5,5) \rightarrow \text { Sum of } 10
\end{array} \\
& P^{\prime}(x)=-2 x+10 \quad \text { Product }=25 \text { \& }- \text { Max. } \\
& \begin{aligned}
P^{\prime}(x)=0 \rightarrow-2 x+10 & =0 \\
x & =5
\end{aligned}
\end{aligned}
$$

Oct 31-10:34 AM

$$
\begin{aligned}
& \text { Sind dimensions of a rectangle with area } 1000 \\
& \text { whose perimeter is as small as Possible } \\
& A=1000 \\
& L W=1000 \\
& m^{2} \\
& P=2 L+2 W
\end{aligned}
$$

\qquad

Oct 31-10:50 AM

$$
\begin{aligned}
& \text { A box has a Square base and Open top } \\
& \text { with } \begin{array}{rl}
32000 \mathrm{~cm}^{3} \text { volume. } V=L W H \\
x & x \cdot x \cdot y=32000 \\
x^{2} y=32000 \\
y=\frac{32000}{x^{2}}
\end{array}
\end{aligned}
$$

find dimensions of the box with least
amount of materials,

$$
m(x, y)=x^{2}+4 x y
$$

$$
f(x)=x^{2}+4 x \cdot \frac{32000}{x^{2}} \quad f(x)=x^{2}+\frac{128000}{x}
$$

$$
f^{\prime}(x)=2 x-\frac{128000}{x^{2}}
$$

$$
f^{\prime \prime}(x)=2+\frac{256000}{x^{3}}>0
$$

$$
\text { Concave up } \bigvee_{R} \text { Min. }
$$

Oct 31-11:07 AM
$f(x)=\frac{x}{x^{2}+9}$

1) Domain: $(-\infty, \infty) \quad$ 2) x-Int: $(0,0)$
2) Y-Int: $(0,0)$ 4) Discuss Symmetry $f(-x)=\frac{-x}{(-x)^{2}+9}=\frac{-x}{x^{2}+9}=-f(x)$
3) $\begin{aligned} & f^{\prime}(x)=\frac{1\left(x^{2}+9\right)-x(2 x)}{\left(x^{2}+9\right)^{2}}=\frac{9-x^{2}}{\left(x^{2}+9\right)^{2}} \\ & f^{\prime}(x)=0 \rightarrow 9-x^{2}=0 \rightarrow x= \pm 3 \\ & f^{\prime}(x) \text { is defined everYwhere. }\end{aligned}$
\qquad
\qquad

$f(x)=\frac{x}{x^{2}+9}$	
1) Domain: $(-\infty, \infty)$	2) x-Int: $(0,0)$
3) Y- Int: $(0,0)$	4) Discuss symmetry
	$f(-x)=\frac{-x}{(-x)^{2}+9}=\frac{-x}{x^{2}+9}=-f(x)$

| 5)$f^{\prime}(x)=\frac{1\left(x^{2}+9\right)-x(2 x)}{\left(x^{2}+9\right)^{2}}=\frac{\text { odd function } \rightarrow \text { origin }}{\left(x^{2}+9\right)^{2}}$ |
| :--- | :--- |
| $f^{\prime}(x)=0 \rightarrow 9-x^{2}=0 \rightarrow x= \pm 3$ |
| $f^{\prime}(x)$ is defined everYwhere. |

$$
\begin{aligned}
& f^{\prime}(x)=\frac{9-x^{2}}{\left(x^{2}+9\right)^{2}} \quad f^{\prime \prime}(x)=\frac{-2 x\left(x^{2}+9\right)^{2}-\left(9-x^{2}\right) \cdot 2\left(x^{2}+9\right) \cdot x}{\left[\left(x^{2}+9\right)^{2}\right]^{2}} \\
& f^{\prime \prime}(x)=\frac{-2 x\left(x^{2}+9\right)^{2}-4 x\left(9-x^{2}\right)\left(x^{2}+9\right)}{\left(x^{2}+9\right)^{4}} \\
& =\frac{\left(x^{2}+9\right)\left[-2 x\left(x^{2}+9\right)-4 x\left(9-x^{2}\right)\right]}{\left(x^{2}+9\right)^{4}}=\frac{-2 x\left[x^{2}+9+\left(9 x^{2}\right)^{2}\right)}{\left(x^{2}+9\right)^{3}} \\
& f^{\prime \prime}(x)=\frac{-2 x\left(27-x^{2}\right)}{\left(x^{2}+9\right)^{3}} \quad f^{\prime}(x)=\frac{9-x^{2}}{\left(x^{2}+9\right)^{2}} \\
& f^{\prime \prime}(x)=0 \longrightarrow x=0, x= \pm 3 \sqrt{3} \\
& S^{\prime \prime}(x) \text { is defined everywhere } \\
& \text { 8) Sign chart }
\end{aligned}
$$

\qquad

